Concentration of Hydrogen ions compared to distilled water

Examples of solutions at this pH

10,000,000	pH= 0	Battery acid, Strong Hydrofluoric Acid			
1,000,000 pH = 1		Hydrochloric acid secreted by stomach lining			
100,000	pH = 2	Lemon Juice, Gastric Acid Vineger			
10,000	pH = 3	Grapefruit, Orange Juice, Soda			
1,000		Acid rain Tomato Juice			
100	pH = 5	Soft drinking water Black Coffee			
10	рН≥б	Urine Saliva			
1	pH = 7	"Pure" water			
1/10	pH = 8	Sea water			
1/100	pH = 9	Baking soda			
1/1,000	pH = 10	Great Salt Lake Milk of Magnesia			
1/10,000	pH = 11	Ammonia solution			
1/100,000	pH = 12	Soapy water			
1/1,000,000	pH =13	Bleaches Oven cleaner			
1/10,000,000	pH = 14	Liquid drain cleaner			

	Concentration of Hydrogen ions compared to distilled water													
10,000,000	1,000,000	100,000	10,000	1,000	100	10.	0	1/10	1/100	1/1,000	1/10,000	1/100,000	1/1,000,000	1/10,000,000
0	•		2			•	7	8	9	10	mà mà	12	13	14
Battery Acid	Hydrochloric acid secreted from the stomach lining (1)	Lemon Juice (2.3) Vinegar (2.9)	Grapefruit & Orange juice, Soft drink	Tomato juice (4.1)	Acid rain (5.6) Black coffee (5)	Urine (6) Milk (6.6)	"Pure" water (7)	Baking soda (8.4), Seawater, Eggs	Toothpaste (9.9)	Milk of magnesium (10.5)	Household Ammonia (11.9)	Soapy water	bleaches, oven cleaner	Liquid drain cleaner, Caustic soda
	Examples of solutions and their respective pH													

Place the following substances where they belong on the pH scale:

•	•	7	1	
	L	,	-4	

McIntosh Apple	3.34
Bananas	5.00
Lemon	2.3
Eggs	7.8
Tea	7.20
Human Blood	7.40
Bread	5.60
Acid Rain	5.2
Cantaloupe	6.40
Parmesan Cheese	5.25
Lettuce	6.0
Milk	6.70
Watermelon	5.40
Wheates	5.10

$$pH + pOH = 14$$

1. Calculate the pH of a solution that is 0.500 M H*.

2. Calculate the pH of a solution that measures a pOH of 4.10.

3. A solution in a lab was tested with pH paper, which revealed the solution had a pH of 6.77. What is the concentration of hydrogen ion in the solution?

4. What is the pOH of a solution that is 0.00310 M H⁺. (Be careful!!)

5. Determine the pH of a solution whose hydroxide ion concentration is $2.8 \times 10^{-2} M_{\odot}$

pH and pOH Calculations

pH =
$$-\log [H_3O^+]$$
 pOH = $-\log [OH^-]$ pH + pOH = 14
$$K_{(1)} = (cO \times 10^{-14} M)^2 = [H_3O^+] = CH_3O^+ =$$

1. Calculate the pH of a solution that is 0.500 M H⁺.

2. Calculate the pH of a solution that measures a pOH of 4.10.

$$pH + pOH = 14$$

$$14 - pH = pOH$$

$$pOH = 14 - 4.10 = 9.90$$

3. A solution in a lab was tested with pH paper, which revealed the solution had a pH of 6.77. What is the concentration of hydrogen ion in the solution?

4. What is the pOH of a solution that is 0.00310 M H⁺. (Be careful!!)

5. Determine the pH of a solution whose hydroxide ion concentration is $2.8 \times 10^{-2} M$.

= 3.23×10-12/1 52.8×10-2M. poH = - log EOH] = 11.49 Could also use [H+370H-]=1.00×10-19/1 [H+3=3,6×10-13/1 pH=-log[H+3] = 10.14

Could Kw= [H+] [0H]=1.08/0-

TOHJ=1.02/0-14M2