Colligative Properties Worksheet

1) What mass of water is needed to dissolve 34.8 g of copper(II) sulfate in order to prepare a 0.521 m solution?
2) The vapor pressure of water at $20^{\circ} \mathrm{C}$ is 17.5 torr. What is the vapor pressure of water over a solution containing 300. $\mathrm{g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ and 455 g of water?
3) Calculate the freezing point of a solution made from 32.7 g of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$, dissolved in 137.0 g of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$. The freezing point of benzene is $5.50^{\circ} \mathrm{C}$ and its K_{f} is $5.12^{\circ} \mathrm{C} / \mathrm{m}$.
4) Calculate the boiling point of a solution made from 227 g of $\mathbf{M g C l}_{\mathbf{2}}$ dissolved in 700. g of water. What is the boiling point of the solution? $\mathrm{K}_{\mathrm{b}}=\mathbf{0 . 5 1 2}{ }^{\circ} \mathrm{C} / \mathrm{m}$.
5) Calculate the concentration of nitrogen gas in a 1.00 L container exerting a partial pressure of 572 mm Hg at room temperature. Henry's law constant for nitrogen at $25^{\circ} \mathrm{C}$ is $6.8 \times 10^{-4} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{atm}$.
6) A solution contains 21.6 g of a nonelectrolyte and 175 g of water. The water freezes at $-7.18^{\circ} \mathrm{C}$ and $\mathrm{K}_{\mathrm{f}}=1.86^{\circ} \mathrm{C} / \mathrm{m}$. Is the nonelectrolyte $\mathrm{CH}_{3} \mathrm{OH}$ or $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$?

Solutions

1) $\mathrm{m}_{1}=34.8 \mathrm{~g} \mathrm{CuSO} 4$

$$
\mathrm{m}=0.521 \mathrm{~m}
$$

$$
\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})
$$

$$
\left.\begin{array}{l}
\mathrm{m}=\mathbf{n} / \mathrm{kg} \\
\mathrm{~kg}=\mathbf{n} / \mathrm{m}=(34.8 \mathrm{~g} \mathrm{CuSO} \\
4
\end{array} \times 1 \mathrm{~mol} \mathrm{CuSO} 4 / 159.61 \mathrm{~g} \mathrm{GuSO}_{4}\right) / 0.521 \mathrm{~m}
$$

2) $\quad P_{A}{ }^{\circ}=\mathbf{1 7 . 5}$ torr

$$
\mathrm{m}_{\mathrm{w}}=455 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
$$

$$
\mathbf{m}_{\mathrm{s}}=300 . \mathrm{g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq})
$$

$$
\mathbf{P}_{\mathbf{w}}=\mathbf{X}_{\mathbf{w}} \mathbf{X} \mathbf{P}_{\mathbf{w}}{ }^{\circ}
$$

$$
\mathbf{X}_{\mathrm{w}}=\mathbf{n}_{\mathrm{w}} /\left(\mathbf{n}_{\mathrm{w}}+\mathbf{n}_{\mathbf{s}}\right)
$$

$$
n_{w}=455 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times 1 \mathrm{~mol} \mathrm{H} \mathbf{2} \mathbf{O} / 18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=25.2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

$$
\mathbf{n}_{\mathrm{s}}=300 . \mathrm{g}_{6} \mathrm{H}_{12} \Theta_{6} \times 1 \mathrm{~mol} \mathrm{C} \mathbf{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} / 180.18 \mathrm{gG}_{6} \mathrm{H}_{12} \Theta_{6}=1.67 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

$$
P_{w}=25.2 \mathrm{~mol} /(25.2 \mathrm{~mol}+1.67 \mathrm{~mol}) \times 17.5 \text { torr } \times 1 \mathrm{~mm} \mathrm{Hg} / 1 \text { torr }
$$

$$
P_{w}=16.4 \mathrm{~mm} \mathrm{Hg}
$$

3)
4)

$$
\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times \mathrm{m} \times \mathrm{i}=0.512^{\circ} \mathrm{C} / \mathrm{m} \times 3.41 \mathrm{~m} \times 3=5.24^{\circ} \mathrm{C}
$$

$$
\Delta T_{b}=T_{b}-T_{b}^{\circ}
$$

$$
5.24^{\circ} \mathrm{C}=\mathrm{T}_{\mathrm{b}}-100.00^{\circ} \mathrm{C}
$$

$$
\mathrm{T}_{\mathrm{b}}=105.24^{\circ} \mathrm{C}
$$

$$
\begin{aligned}
& \mathrm{m}_{1}=32.7 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8} \quad \mathrm{~T}_{\mathrm{f}}{ }^{\circ}=5.50^{\circ} \mathrm{C} \\
& \mathrm{~m}_{2}=137.0 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{6} \\
& \mathrm{~K}_{\mathrm{f}}=5.12^{\circ} \mathrm{C} / \mathrm{m} \\
& \mathbf{m}=\mathbf{n} / \mathbf{k g} \\
& m=\left(32.7 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8} \times 1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8} / 44.11 \mathrm{~g} \mathrm{G}_{3} \mathrm{H}_{8}\right) /\left(137.0 \mathrm{~g} \mathrm{x} 1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
& \mathrm{m}=5.41 \mathrm{~m} \\
& \Delta T_{f}=K_{f} \times \mathrm{mx} \mathbf{x}=5.12^{\circ} \mathrm{C} / \mathrm{m} \times 5.41 \mathrm{~m} \times 1=27.7^{\circ} \mathrm{C} \\
& \Delta T_{f}=T_{f}^{\circ}-T_{f} \\
& 27.7^{\circ} \mathrm{C}=5.50^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{f}} \\
& \mathrm{~T}_{\mathrm{f}}=-22.2^{\circ} \mathrm{C} \\
& \mathbf{m}_{1}=227 \mathbf{g ~ M g C l} \mathbf{M g}_{2} \\
& \mathrm{~K}_{\mathrm{b}}=\mathbf{0 . 5 1 2}{ }^{\circ} \mathrm{C} / \mathrm{m} \\
& \mathrm{~m}_{2}=700 . \mathrm{g} \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{MgCl}_{2}(\mathrm{~s}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \\
& \mathbf{m}=\mathbf{n} / \mathbf{k g} \\
& \left.\mathrm{m}=227 \mathrm{~g} \mathrm{MgCl}_{2} \times 1 \mathrm{~mol} \mathrm{MgCl} / \mathbf{9 5 . 2 0} \mathrm{g} \mathrm{MgGl}_{2}\right) /\left(700 . \mathrm{gx} 1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
& \mathrm{m}=3.41 \mathrm{~m}
\end{aligned}
$$

5) $\quad \mathbf{P}_{\mathrm{g}}=\mathbf{5 7 2} \mathbf{~ m m ~ H g}$

$$
\mathrm{V}=1.00 \mathrm{~L}
$$

$$
\mathrm{k}=6.8 \times 10^{-4} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{~atm} \quad \mathrm{~T}=25^{\circ} \mathrm{C}
$$

$$
\mathbf{S}_{\mathrm{g}}=\mathbf{k} \mathbf{P}_{\mathbf{g}}
$$

$$
\mathrm{S}_{\mathrm{g}}=6.8 \times 10^{-4} \mathrm{~mol} / \mathrm{L} \cdot \mathbf{a t m} \times 572 \mathrm{~mm} \mathrm{Hg} \times 1 \mathrm{~atm} / 760 \mathrm{~mm} \mathrm{Hg}
$$

$$
\mathrm{S}_{\mathrm{g}}=5.1 \times 10^{-4} \mathrm{M}
$$

6)

$$
\begin{array}{ll}
m_{u}=21.6 \mathrm{~g} & \mathrm{~T}_{\mathrm{f}}=-7.18^{\circ} \mathrm{C} \\
\mathrm{~m}_{\mathrm{w}}=175 \mathrm{~g} & \mathrm{~K}_{\mathrm{f}}=1.86^{\circ} \mathrm{C} / \mathrm{m}
\end{array}
$$

$$
\Delta T_{f}=m \times K_{f} \times i
$$

$$
\mathbf{m}=\Delta \mathbf{T}_{f} / \mathbf{K}_{f}
$$

$$
\mathrm{m}=7.18^{\circ} \mathrm{G} /\left(1.86^{\circ} \mathrm{G} / \mathrm{m}\right)=3.86 \mathrm{~m}
$$

$$
\mathrm{m}=\mathrm{n} / \mathrm{kg}
$$

$$
\mathrm{n}=\mathrm{m} \times \mathrm{kg}=3.86 \mathrm{~m} \times 175 \mathrm{~g} \mathrm{x} 1 \mathrm{~kg} / 10^{3} \mathrm{~g}=0.676 \mathrm{~mol}
$$

$$
\mathbf{n}=\mathbf{m} / \mathbf{M M}
$$

$$
\mathrm{MM}=\mathbf{m} / \mathrm{n}=21.6 \mathrm{~g} / 0.676 \mathrm{~mol}=32.0 \mathrm{~g} / \mathrm{mol}
$$

The electrolyte is $\mathrm{CH}_{3} \mathbf{O H}$.

