Acid-Base Sample Questions

Acid-Base Reactions, Conjugate Acid/Base Pairs

In the following reactio	6)	In the	fol	lowing	reacti	on
--	----	--------	-----	--------	--------	----

$$HCO_3^-(aq) + H_2O(aq) \rightarrow H_2CO_3(aq) + OH^-(aq)$$

- A) HCO₃- is an acid and H₂CO₃ is its conjugate base.
- B) H₂O is an acid and OH- is its conjugate base.
- C) HCO3- is an acid and OH- is its conjugate base.
- D) H₂O is an acid and H₂CO₃ is its conjugate base.
- E) H₂O is an acid and HCO₃⁻ is its conjugate base.

7) What is the conjugate acid of OH-?

- A) O²-
- B) H₂O
- C) NaOH
- D) OH-
- E) none of the above

8) What are the products of a neutralization reaction?

- A) salt and carbon dioxide
- B) carbon dioxide and water
- C) water and salt
- D) oil and water
- E) none of the above

4. Write conjugate acids for the following:

- a. HSO₄-1 b. HCO₃⁻¹
- c. H₂PO₄⁻¹
- d. H₂O
- e. NH₃

Write conjugate bases for the following:

- a. HSO₄-1
- b. HCO₃⁻¹

- e. HC₂H₃O₂ _____

3. For the following	reaction, which	ch substance is t	he base? 2HCl +	$-$ Mg(OH) ₂ \rightarrow MgCl ₂ + 2HC	Н
6. What are the reacti	on products fo	or a neutralization	reaction betwee	n H_2SO_4 and KOH ?	
7. BaCl ₂ is a salt that	must have bee	en formed from th	ne acidand	d the base	
8. Amphoteric Speci	es		·		
b) They neu c) They read	proton donors tralize bases. et with nonme et with bases t		lt and oxygen.	rids?	
1. Which of the follo	owing is a we	ak base in aque	ous solution	-	
a) NH ₃	b) HCl	c) KOH	d) NaOH	e) Ca(OH) ₂	

Lewis Acids ACCEPT an electron pair, Lewis Bases DONATE electron pairs. In the above reaction, NH_3 "donates" the lone electron pair on N to create the Bond with Cu^{+2} . In this reaction, NH_3 is the Lewis Base, and Cu^{+2} is the Lewis Acid.

Label the Lewis acid and the Lewis base in the reactions below:

Bronsted-Lowry Acids and Bases

Identity the conjugation acid-base pairs in the following reactions. An acid donates a proton to become a conjugate base. A base accepts a proton to form a conjugate acid.

1.)
$$HCO_3^- + NH_3 \rightarrow CO_3^{-2} + NH^{4+}$$

2.)
$$HCl + H_2O \rightarrow H_3O^+ + Cl^-$$

10.) HCN +
$$H_2O \rightarrow CN^- + H_3O^+$$

3.)
$$CH_3COOH + H_2O \rightarrow H_3O^+ + CH_3COO^-$$

11.)
$$C_6H_5NH_2 + H_2O \rightarrow C_6H_5NH_3^+ + OH^-$$

4.)
$$HOCl + NH_3 \rightarrow NH_4^+ + ClO^-$$

12.)
$$H_2O + H_2O \rightarrow H_3O^+ + OH^-$$

5.)
$$H_2SO_4 + OH^- \rightarrow HSO_4^- + H_2O$$

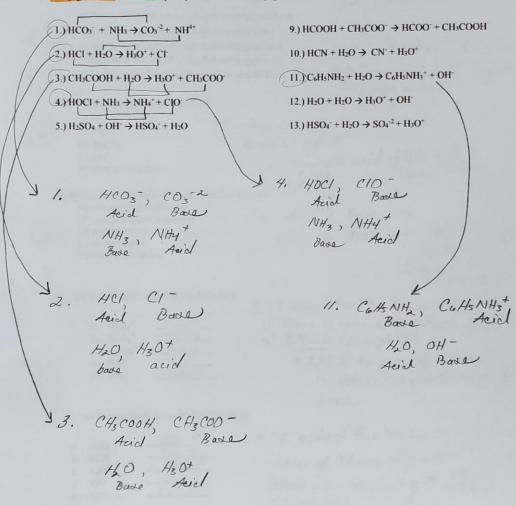
13.)
$$HSO_4^- + H_2O \rightarrow SO_4^{-2} + H_3O^+$$

Answers/ Key Below:

for

Acid-Base Sample Questions

Acid-Base Reactions, Conjugate Acid/Base Pairs


AC	id-base Reactions, Conjugate	Aciu/ base Pairs	
6) In	the following reaction: HCO_3^- (aq) + H_2O (aq) \rightarrow H_2CO_3 (aq)) + OH- (aq)	Acids Donate H+ Boxes Accept H+
B	A) HCO ₃ ⁻ is an acid and H ₂ CO ₃ is its of B) H ₂ O is an acid and OH ⁻ is its conjug C) HCO ₃ ⁻ is an acid and OH ⁻ is its con D) H ₂ O is an acid and H ₂ CO ₃ is its con E) H ₂ O is an acid and HCO ₃ ⁻ is its con	conjugate base. gate base. njugate base. njugate base.	HCO3 "becomes" HCO3 (takes H' HO "becomes" OH (gives H+) L' Acting as Acid
7) W	What is the conjugate acid of OH-? A) O ² - B) H ₂ O C) NaOH D) OH- E) none of the above	acting as bad Rudes a cocep	
8) V	What are the products of a neutralization A) salt and carbon dioxide B) carbon dioxide and water C) water and salt D) oil and water E) none of the above	Ex: April	+ Bool -> + KOH -> KCl + H20 'Salt" (ionic compound)
	Write conjugate acids for the following a. HSO_4^{-1} b. HCO_3^{-1} c. $H_2PO_4^{-1}$ d. H_2O e. NH_3 NH_4^{-1}	AIF aske of Huse as BASE *Ac	d for the canjugate acids formulas, these are behaving (accept H+) ld H+ to given formulas to obtain conjugate acid feach base
5.	Write conjugate bases for the follow	ing:	6
	a. HSO_4^{-1} b. HCO_3^{-1} c. $H_2PO_4^{-1}$ d. H_2O e. $HC_2H_3O_2$ $C_2H_3O_2$	bases of Those a (donate	to of for the conjugate of these formulas, then ire behaving as ACIDS when convert from given conjugate
*1	Hos-, H2O, + H2POY, are Ampholevic.	fo bo	avor of each acid

3. For the following reaction, which substance is the base? 2HCl + Mg(OH) ₂ → MgCl ₂ + 2HOH OH accords H to c read a HOH 6. What are the reaction products for a neutralization reaction between H ₂ SO ₄ and KOH? H ₂ SO ₄ + 2KOH ⇒ 2H3H + K ₂ SO ₄ 7. BaCl ₂ is a salt that must have been formed from the acid HCl and the base Ba(OH) ₂ . Product: Product: Product: A Which of the following reaction, which substance is the base? 2HCl + Mg(OH) ₂ → MgCl ₂ + MgCl ₂
h) They neutralize bases
They react with nonmetals to give a salt and oxygen. All acids ecutain O, d) They react with bases to give a salt and water. So not always produced
e) They taste sour. * Origanic acids contain O! * Origanic acids contain O!
1. Which of the following is a weak base in aqueous solution
a) NH3 b) HCI c) KOH d) NaOH e) Ca(OH)2 String string baod badd badd

Lewis Acids ACCEPT an electron pair, Lewis Bases DONATE electron pairs. In the above reaction, NH $_3$ "donates" the lone electron pair on N to create the Bond with Cu $^{+2}$. In this reaction, NH $_3$ is the Lewis Base, and Cu $^{+2}$ is the Lewis Acid.

Bronsted-Lowry Acids and Bases

Identity the conjugation acid-base pairs in the following reactions. An acid donates a proton to become a conjugate base. A base accepts a proton to form a conjugate acid.

